

The XChem platform at Diamond Light Source

Fragment Based Drug Discovery

- Libraries of 500-1000 compounds
- Molecular weight < 250 Da
- mM- μ M affinities **BUT** with high atom efficiency
- Often identified by biophysical methods
- Drives iterative optimisation

Fragment screening at Diamond: XChem

https://doi.org/10.1016/b978-0-12-381274-2.00013-3

Complete screening experiment: crystal-to-model

XCHEM

Diamond

Fragment Screening

XChem Screen Readout

Complete screening experiment: crystal-to-model

SoakDB

Launched from a .bat file in the lab36 directory, eg here: Y:\data\lb18145\lb18145-216\processing\lab36\soakDB.bat

XCHEN Diamond Fragment Screening

Libraries

Several diverse fragment libraries available

- Over 3,000 compounds in total
- All available in d6-DMSO at 100-500 mM
 - Some also offered in ethylene glycol (EG)
 - Typically at 100 mM
- Not bound by any IP
- All commercially available or published
- Custom libraries can also be used

	LIS	t of live	ragment	libraries	_	
Library	Description	# of cpds	conc. in DMSO (mM)	conc. in EG (mM)	Available to Industry?	Contact person for follow-ups
<u>DSiP</u>	Poised reaction for quick follow-ups	768	500	100	yes	XChem
Collaborative libraries						
EUbOPEN- DSIP extended	Poised saturated heterocycles	108	500	100	твс	Adam Nelson
<u>EU-</u> OPENSCREEN	Possibility of follow- ups through EU- OPENSCREEN	968	100	-	твс	EU-OPENSCREEN consortium
<u>SpotXplorer</u>	Pharmacophore and binding hot spots	96	varied	-	твс	<u>György M Keserű</u>
<u>FragLites</u>	Halogenated fragments	31	500	100	yes	<u>Mike</u> <u>Waring</u> and <u>Martin</u> <u>Noble</u>
<u>PepLites</u>	Halogenated peptidomimetics	25	500	100	ТВС	<u>Mike</u> <u>Waring</u> and <u>Martin</u> <u>Noble</u>
Cambridge 3D	3D and poised	137	250-500	-	твс	David Spring
York 3D	3D, substituted aliphatic heterocycle	106	500	100	yes	Peter O'Brien
Leeds 3D	3D, natural product- like scaffolds, high sp3	125	Varied	-	твс	N/A
<u>MiniFrags</u>	Astex's pharmacophore	80	1M	in water available	yes	N/A
<u>CovHetFrags</u>	Small heterocyclic electrophyles (Covalent MiniFrags)	141	varied	-	твс	<u>György M Keserű</u>
<u>Cys</u> <u>Electrophyle</u>	Cysteine covalent library	993	20	-	твс	<u>Nir London</u>

https://www.diamond.ac.uk/Instruments/Mx/Fragment-Screening/Fragment-Libraries.html

Crystal soaking – Acoustic dispensing

- Contactless, acoustic liquid dispensing technology
- High precision/accuracy dispensing
- Optimised for DMSO liquid handling
- Can soak hundreds of crystals in minutes
- Preferred tray format SWISSCI 3 drop

http://www.labcyte.com/ https://doi.org/10.1107/S1399004714017581 9 https://doi.org/10.1107/S205979831700331X

Crystal soaking – Acoustic dispensing

10

diamond

Rapid crystal soaking

Crystal Harvesting - Crystal Shifter

- X/Y stage for microscope
- Allows rapid crystal harvesting (up to 200 samples/hour)
- Dedicated software with sample information recorded in database
- 3 units available in XChem lab

Automated/Unattended Data Collection on i04-1

- Optical-based or X-ray based centring
- Crystal mounting (~32 samples/hour)
- Rapid sample exchange (20 s/sample)
- High-flux (0.92 Å fixed wavelength)
- BART high capacity dewar (592 samples)
- Dectris Eiger 9MXE

Complete screening experiment: crystal-to-model

diamond

Data Analysis Workflow

Pan Density Dataset Analysis (PanDDA)

Data Review & Dissemination

How to access - Standard Academic Access

- Covers single target with calls issued twice a year (usually Apr and Oct)
 - Proposals evaluated by an independent peer-review panel
 - Includes iNEXT-Discovery applications
- Tier 1: Exploratory projects (100-200 fragments)
 - Feasibility is high (robust crystal system established) but credible strategy for follow-up of hits is not in place
- Tier 2: Full screen (700-1000 fragments)
 - Feasibility has been demonstrated and a robust strategy for progressing hits has been provided
- Tier 3: Follow-up support (batches of 200-300 compounds)
 - Feasibility previously established and design rationale articulated for peer review

Ideal XChem ready crystal systems

- Grow reproducibly (>50% drops) in SWISSCI 3-drop plates
- Are chunky, rather than needles
- Consistently diffract to high resolution (<2.5 Å)
- Tolerate high solvent concentrations
- Don't stick to the plate
- Don't grow skin on the drop
- Don't require complicated cryoprotection

But non-ideal crystals are feasible!

https://www.diamond.ac.uk/Instruments/Mx/Fragment-Screening/Troubleshooting-Tips-Tricks/Crystallisation-And-SamplePrep.html

Establishing "XChem ready" systems

Diamond

Fragment Screening

20 https://dx.doi.org/10.3791/62414

Useful Contacts and Links

- Frank von Delft (PBS): 8997, <u>frank.von-delft@diamond.ac.uk</u>
 - Daren Fearon (ACD): 8936, <u>daren.fearon@diamond.ac.uk</u>
 - Blake Balcomb (ACD): blake.h.balcomb@diamond.ac.uk
 - Alex Dias (Industry): 8200, <u>alexandre.dias@diamond.ac.uk</u>
 - Ailsa Powell (Industry): 7524, ailsa.powell@diamond.ac.uk
 - Warren Thompson: <u>warren.Thompson@diamond.ac.uk</u>
- <u>http://www.diamond.ac.uk/Beamlines/Mx/Fragment-Screening.html</u>
- Achieving-efficient-fragment-screening-at-XChem-facility-at-Diamond Light Source: <u>https://dx.doi.org/10.3791/62414</u>

References on XChem

TexRank Crystal Targeting:

Ng, J. T., et al. Using textons to rank crystallisation droplets by the likely presence of crystals. Acta Cryst D, 70, 2701-2718 (2014). <u>https://doi.org/10.1107/S1399004714017581</u>

ECHO Fragment Dispensing:

Collins, P. M., et al. Gentle, fast and effective crystal soaking by acoustic dispensing. Acta Cryst D, 73, 246-255 (2017). https://doi.org/10.1107/S205979831700331X

Shifter Crystal Harvesting:

- Wright, N. D., et al. The Low-Cost, Semi-automated Shifter Microscope Stage Transforms Speed and Robustness of Manual Protein Crystal Harvesting. Acta Cryst D, 77, 62-74 (2021). <u>https://doi.org/10.1107/S2059798320014114</u>
 <u>XChem Explorer:</u>
- Krojer, T., et al. The XChem Explorer graphical workflow tool for routine or large-scale protein-ligand structure determination. Acta Cryst D, 73, 267-278 (2017). <u>https://doi.org/10.1107/S2059798316020234</u>
 PanDDA:
- Pearce, N., et al. Partial-occupancy binders identified by the Pan-Dataset Density Analysis method offer new chemical opportunities and reveal cryptic binding sites. *Structural Dynamics*, **4**, 03210 (2017). <u>https://doi.org/10.1063/1.4974176</u>
- Pearce, N., et al. A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density. Nat. Commun., 8, 15123 (2017). <u>https://doi.org/10.1038/ncomms15123</u>
- The XChem pipeline overview
- Douangamath, A., et al. Achieving Efficient Fragment Screening at XChem Facility at Diamond Light Source. JoVE journal (2021). <u>https://www.jove.com/t/62414/achieving-efficient-fragment-screening-at-xchem-facility-at-diamond</u>

