

I05 – Angle Resolved Photoemission Spectroscopy (ARPES)

Angle-Resolved Photoemission Spectroscopy (ARPES) maps the dispersion of electronic bands near the Fermi level and, in particular, the Fermi surface itself by exciting the bound electrons in a sample with a given photon energy. The momentum parallel to the surface is fully conserved, thus making the method suitable for layered low-dimensional materials. The three-dimensional momentum distribution is also reflected in the photoelectron features thus making the spectroscopy applicable to metallic single crystals, provided that a well-defined clean surface can be prepared in ultra-high vacuum. The minimum samples size is 500 x 500 μ m² given by the light spot (50 x 50 μ m²) and the sphere of confusion of the sample goniometer.

Sample Preparation

Samples have to be prepared *in situ* in ultrahigh vacuum to achieve atomically controlled, clean surfaces. The vacuum system of the high resolution ARPES branch provides the following methods:

- · Ar-ion etching and annealing for polished metal surfaces
- evaporation sources for the preparation of ultrathin films
- · direct heating flash for passivated semiconductor surfaces
- port for attaching user-supplied preparation equipment

Beamline Specification

Beamline I05	High Resolution Branch
Photon Energy Range	18 – 240 eV
Energy Resolution	10 meV
Angular Resolution	0.1°
Available Polarisation Modes	Linear Horizontal/Vertical, Circular Left/Right
Smallest Sample Size	500 x 500 μm²
Controlled Sample Temperature Range	10 – 400 K
Vacuum Conditions	< 5 x 10 ⁻¹¹ mbar

For further information please contact the Diamond Industrial Liaison Office on

+44 (0)1235 / /8/9

industry@diamond.ac.uk

www.diamond.ac.uk/industr

Carbon-Based Materials

- Graphene
- · Molecular electronics
- · Carbon nanotubes

New Materials

 ARPES as soon as single crystals aregrown

Transition Metals

- Quantitative analysis of electron interactions
- Fermi surfaces
- Renormalisation
- · Energy gaps

Surfaces and Interfaces

- · Molecular adsorbates
- · Ultrathin films
- · Stepped surfaces
- · Epitaxially grown nano-wires
- · Topological insulators

or further information please contact the Diamond Industrial Liaison Office on

+44 (0)1235 / /8/9

industry@diamond.ac.ui

www.diamond.ac.uk/industry

© Diamond Light Source Limited 20