



Microfocus X-ray Absorption Spectroscopy

I18 is a versatile, microfocus medium energy X-ray beamline dedicated for X-ray spectroscopy and structural investigations of complex systems.

The XAS technique is complemented by microdiffraction and optical imaging methodology; therefore this beamline provides a world class facility, using high brightness microscale X-ray beams for the study of complex inhomogeneous materials and systems in their operating conditions as well as investigations of materials in hostile environments.

Dedicated optics for the μ -focus beam dimensions allow the mapping of elements in complex samples; subsequently the structure of the specific region of the studied material can be determined by μ -XRD or μ -XAS.

Beamline Specification

Energy range [keV]	2 – 20
Investigated elements	P – Mo (K edge)
	Tc – Am (L edges)
Beam size (µm) at sample	2-100 x 2-100 (H x V)
Sample size	Maximum dimension 25 mm to be measured in one run.
Sample environments	Linkam furnace (300 – 1650 K),
	Hot air blowers (heating up to 1650 K),
	He/LN ₂ Cryostat, He enclosure for low energy, In situ Raman at 785 nm.
Techniques available	XRF tomography,
Techniques available	XRF tomography, XRD tomography,
Techniques available	
Techniques available	XRD tomography,
Techniques available	XRD tomography, XRD, XAS/XRF (time-resolved &
Techniques available Detector & analyser	XRD tomography, XRD, XAS/XRF (time-resolved & static), XRF/XRD mapping,
	XRD tomography, XRD, XAS/XRF (time-resolved & static), XRF/XRD mapping, ReflEXAFS. 4 element Si drift fluorescence

APPLICATIONS

Chemistry

- · Direct studies of the structure and interactions of catalysts with the chemical reagents under various environmental conditions - three-way catalysts, fuel cells;
- Understanding of the corrosion process;
- · Study of solution chemistry.

Material Science

- · Study samples under realistic conditions of high pressures and temperatures;
- · Study kinetic processes in operating electrochemical cells:
- · Design and characterisation of novel, advanced materials:
- Studies on the failure of various materials e.g. ceramic and composite materials.

Environmental

- Study the effect of drugs on living cells;
- Follow the effects of biological processes on the cell e.g. starvation;
- · Monitor cell regulation processes;
- · Investigate the impact of nanoparticles on cells.

Bio-Medicine

- · Determination of the structure of metalloproteins;
- Study biochemical processes the life mechanisms of photosynthesis or respiration;
- Study the interaction between implant nanoparticles and the surrounding tissues;
- Examination of the form in which metal is accumulated in tissues e.g. studies of diseases such as Alzheimer's and Parkinson's.

Diamond Industrial Liaison Team

+44 1235 778797

